Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(12): 398, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37974926

RESUMEN

Human pathogenic diseases received much attention recently due to their uncontrolled spread of antimicrobial resistance (AMR) which causes several threads every year. Effective alternate antimicrobials are urgently required to combat those disease causing infectious microbes. Halophilic actinobacteria revealed huge potentials and unexplored cultivable/non-cultivable actinobacterial species producing enormous antimicrobials have been proved in several genomics approaches. Potential gene clusters, PKS and NRPKS from Nocardia, Salinospora, Rhodococcus, and Streptomyces have wide range coding genes of secondary metabolites. Biosynthetic pathways identification via various approaches like genome mining, In silico, OSMAC (one strain many compound) analysis provides better identification of knowing the active metabolites using several databases like AMP, APD and CRAMPR, etc. Genome constellations of actinobacteria particularly the prediction of BGCs (Biosynthetic Gene Clusters) to mine the bioactive molecules such as pigments, biosurfactants and few enzymes have been reported for antimicrobial activity. Saltpan, saltlake, lagoon and haloalkali environment exploring potential actinobacterial strains Micromonospora, Kocuria, Pseudonocardia, and Nocardiopsis revealed several acids and ester derivatives with antimicrobial potential. Marine sediments and marine macro organisms have been found as significant population holders of potential actinobacterial strains. Deadly infectious diseases (IDs) including tuberculosis, ventilator-associated pneumonia and Candidiasis, have been targeted by halo-actinobacterial metabolites with promising results. Methicillin resistant Staphylococus aureus and virus like Encephalitic alphaviruses were potentially targeted by halophilic actinobacterial metabolites by the compound Homoseongomycin from sponge associated antinobacterium. In this review, we discuss the potential antimicrobial properties of various biomolecules extracted from the unexplored halophilic actinobacterial strains specifically against human infectious pathogens along with prospective genomic constellations.

2.
Microb Pathog ; 184: 106360, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722491

RESUMEN

Sodium alginate based (SA) hydrogel supplemented Cerium Oxide nanoparticles (CeO2NPs) was produced to fabricate an antimicrobial thin film using an aqueous extract of G. salicornia (Gs). The Gs-CeO2NPs were characterized via SEM, FT-IR, EDX, XRD and DLS, the particle size was 200 nm, agreed with XRD. Gs-SA powder was extracted and incorporated with CeO2NPs. The Gs-SA and its composite thin film (Gs-CeO2NPs-SATF) were characterized including viscosity, FT-IR, TGA, and SEM. The adhesion of Gs-SA coating around Gs-CeO2NPs confirmed via FTIR. The antimicrobial properties of Gs-CeO2NPs and CeO2NPs-SATF were proved in MICs for E. coli and Candida albicans at 62.5 and 250.0 µg/mL. The biofilm inhibition efficiency of CeO2NPs-SATF was 74.67 ± 0.98% and 65.45 ± 0.40% for E. coli and Candida albicans. The CeO2NPs-SATF was polydisperse in nature and film structure gets fluctuated with NPs concentration. Increased NPs into SATF enhances pore size of gel and corroborated with viscous behaviour. The cytotoxicity of Gs-CeO2NP-SA in Artemia salina at higher concentration 100 µg/mL provides less lethal effect into the adult. The antioxidant activity of Gs-CeO2NP-SA in DPPH assay was noticed at 0.6 mg ml-1 with radical scavenging activity at 65.85 ± 0.81%. Thus the Gs-CeO2NP-SATF would be suitable in antimicrobial applications.


Asunto(s)
Antiinfecciosos , Gracilaria , Nanopartículas del Metal , Nanopartículas , Hidrogeles , Escherichia coli , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/farmacología , Nanopartículas/química
3.
Environ Res ; 231(Pt 2): 116095, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37182825

RESUMEN

In this study, a one-step hydrothermal approach was used to make pure magnetic copper ferrite (CuFe2O4) and copper ferrite-graphene oxide (CuFe2O4-rGO) nanocomposites (NCs) and spinel structure CuFe2O4 with a single phase of tetragonal CuFe2O4-rGO-NCs was confirmed by the XRD. Then, characterization of CuFe2O4-rGO-NCs was done using ng Raman spectroscopy, FT-IR, TGA-DTA, EDS, SEM, and TEM. The synthesized NCs was exposed to UV light to evaluate its photocatalytic activity for the degradation of methylene blue (MB) and rhodamine B (RhB) with CuFe2O4 and CuFe2O4-rGO-NCs, respectively. The catalyst CuFe2O4-rGO-NCs provided higher degradation of MB (94%) than for RhB (86%) under UV light irradiation compared to CuFe2O4. Further, the antibacterial activities of CuFe2O4-NPs and CuFe2O4-rGO-NCs were tested against Gram-negative and -positive bacterial pathogens such as Vibrio cholera (V. cholera); Escherichia coli (E. coli); Pseudomonas aeruginosa (P. aeruginosa); Bacillus subtilis (B. subtilis); Staphylococcus aureus (S. aureus); and Staphylococcus epidermidis (S. epidermidis) by well diffusion method. At 100 µg/mL concentrations of CuFe2O4-rGO-NCs, maximal growth inhibition was shown against E. coli (18 mm) and minimum growth inhibition against S. epidermidis (12 mm). This study suggests that CuFe2O4-rGO-NCs as a high-efficacy antibacterial material and plays an important role in exhibiting higher sensitivity depending on concentrations. The results encourage that the synthesized CuFe2O4-rGO-NCs can be used as a promising material for the antibacterial activity and also for dye degradation in the water/wastewater treatment plants.


Asunto(s)
Cobre , Nanocompuestos , Escherichia coli , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Nanocompuestos/química
4.
Metabolites ; 12(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36355177

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infections are increasingly causing morbidity and mortality; thus, drugs with multifunctional efficacy against MRSA are needed. We extracted a novel compound from the halophilic Pseudomonas aeruginosa using an ethyl acetate (HPAEtOAcE). followed by purification and structure elucidation through HPLC, LCMS, and 1H and 13C NMR, revealing the novel 5-(1H-indol-3-yl)-4-pentyl-1,3-oxazole-2-carboxylic acid (Compound 1). Molecular docking of the compound against the MRSA PS (pantothenate synthetase) protein was confirmed using the CDOCKER algorithm in BDS software with specific binding to the amino acids Arg (B:188) and Lys (B:150) through covalent hydrogen bonding. Molecular dynamic simulation of RMSD revealed that the compound-protein complex was stabilized. The proficient bioactivities against MRSA were attained by the HPAEtOAcE, including MIC and MBCs, which were 0.64 and 1.24 µg/mL, respectively; 100% biomass inhibition and 99.84% biofilm inhibition were observed with decayed effects by CLSM and SEM at 48 h. The hla, IrgA, and SpA MRSA genes were downregulated in RT-PCR. Non-hemolytic and antioxidant potential in the DPPH assay were observed at 10 mg/mL and IC50 29.75 ± 0.38 by the HPAEtOAcE. In vitro growth inhibition assays on MRSA were strongly supported by in silico molecular docking; Lipinski's rule on drug-likeness and ADMET toxicity prediction indicated the nontoxic nature of compound.

5.
Microorganisms ; 10(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35208871

RESUMEN

Microbial pathogens that cause severe infections and are resistant to drugs are simultaneously becoming more active. This urgently calls for novel effective antibiotics. Organisms from extreme environments are known to synthesize novel bioprospecting molecules for biomedical applications due to their peculiar characteristics of growth and physiological conditions. Antimicrobial developments from hypersaline environments, such as lagoons, estuaries, and salterns, accommodate several halophilic microbes. Salinity is a distinctive environmental factor that continuously promotes the metabolic adaptation and flexibility of halophilic microbes for their survival at minimum nutritional requirements. A genetic adaptation to extreme solar radiation, ionic strength, and desiccation makes them promising candidates for drug discovery. More microbiota identified via sequencing and 'omics' approaches signify the hypersaline environments where compounds are produced. Microbial genera such as Bacillus, Actinobacteria, Halorubrum and Aspergillus are producing a substantial number of antimicrobial compounds. Several strategies were applied for producing novel antimicrobials from halophiles including a consortia approach. Promising results indicate that halophilic microbes can be utilised as prolific sources of bioactive metabolites with pharmaceutical potentialto expand natural product research towards diverse phylogenetic microbial groups which inhabit salterns. The present study reviews interesting antimicrobial compounds retrieved from microbial sources of various saltern environments, with a discussion of their potency in providing novel drugs against clinically drug-resistant microbes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...